skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kerlin, Jamie R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Jones (Ed.)
    The addition of terrestrial inputs to the ocean can have cascading impacts on coastal biogeochemistry by directly altering the water chemistry and indirectly changing ecosystem metabolism, which also influences water chemistry. Here, we use submarine groundwater discharge (SGD) as a model system to examine the direct geochemical and indirect biologically mediated effects of terrestrial nutrient subsidies on a fringing coral reef. We hypothesize that the addition of new solutes from SGD alters ecosystem metabolic processes including net ecosystem production and calcification, thereby changing the patterns of uptake and release of carbon by benthic organisms. SGD is a common land–sea connection that delivers terrestrially sourced nutrients, carbon dioxide, and organic matter to coastal ecosystems. Our research was conducted at two distinct coral reefs in Moʻorea, French Polynesia, characterized by contrasting flow regimes and SGD biogeochemistry. Using a Bayesian structural equation model, our research elucidates the direct geochemical and indirect biologically mediated effects of SGD on both dissolved organic and inorganic carbon pools. We reveal that SGD‐derived nutrients enhance both net ecosystem production and respiration. Furthermore, the study demonstrates that SGD‐induced alterations in net ecosystem production significantly influence pH dynamics, ultimately impacting net ecosystem calcification. Notably, the study underscores the context‐dependent nature of these cascading direct and indirect effects resulting from SGD, with flow conditions and the composition of the terrestrial inputs playing pivotal roles. Our research provides valuable insights into the interplay between terrestrial inputs and coral reef ecosystems, advancing our understanding of coastal carbon cycling and the broader implications of allochthonous inputs on ecosystem functioning. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Abstract Nutrient availability drives community structure and ecosystem processes, especially in tropical lagoons that are typically oligotrophic but often receive allochthonous inputs from land. Terrestrially derived nutrients are introduced to tropical lagoons by surface runoff and submarine groundwater discharge, which are influenced by seasonal precipitation. However, terrigenous inputs presumably diminish along the onshore–offshore gradients within lagoons. We characterized nutrient availability in the lagoons of a tropical high island, Moorea, French Polynesia, using spatially distributed measurements of nitrogen content in the tissues of a widespread macroalga during the rainy season over 4 yr. We used synoptic water column sampling to identify associations among macroalgal nutrient content and the composition of inorganic macronutrients, dissolved organic matter, and microbial communities. We paired these data with quantifications of land use in nearby watersheds to uncover links between terrestrial factors, aquatic chemistry, and microbial communities. Algal N content was highest near shore and near large, human‐impacted watersheds, and lower at offshore sites. Sites with high algal N had water columns with high nitrite + nitrate, silicate, and increased humic organic matter (based on a fluorescence Humification Index), especially following rain. Microbial communities were differentiated among nearshore habitats and covaried with algal N and water chemistry, supporting the hypothesis that terrigenous nutrient enrichment shapes microbial dynamics in otherwise oligotrophic tropical lagoons. This study reveals that land–sea connections create nutrient subsidies that are important for lagoon biogeochemistry and microbiology, indicating that future changes in land use or precipitation will modify ecosystem processes in tropical lagoons. 
    more » « less
    Free, publicly-accessible full text available October 30, 2026
  3. Abstract Complex biological traits often originate by integrating previously separate parts, but the organismal functions of these precursors are challenging to infer. If we can understand the ancestral functions of these precursors, it could help explain how they persisted and how they facilitated the origins of complex traits. Animal eyes are some of the best studied complex traits, and they include many parts, such as opsin‐based photoreceptor cells, pigment cells, and lens cells. Eye evolution is understood through conceptual models that argue these parts gradually came together to support increasingly sophisticated visual functions. Despite the well‐accepted logic of these conceptual models, explicit comparative studies to identify organismal functions of eye precursors are lacking. Here, we investigate how precursors functioned before they became part of eyes in Cnidaria, a group formed by sea anemones, corals, and jellyfish. Specifically, we test whether ancestral photoreceptor cells regulated the discharge of cnidocytes, the expensive single‐use cells with various functions including prey capture, locomotion, and protection. Similar to a previous study ofHydra, we show an additional four distantly related cnidarian groups discharge significantly more cnidocytes when exposed to dim blue light compared with bright blue light. Our comparative analyses support the hypothesis that the cnidarian ancestor was capable of modulating cnidocyte discharge with light, which we speculate uses an opsin‐based phototransduction pathway homologous to that previously described inHydra. Although eye precursors might have had other functions like regulating timing of spawning, our findings are consistent with the hypothesis that photoreceptor cells which mediate cnidocyte discharge predated eyes, perhaps facilitating the prolific origination of eyes in Cnidaria. 
    more » « less